
Let 𝑘 be a field and let OS𝑛(𝑘) =
{
𝐴 = 𝐴𝑇 and 𝐴𝐴𝑇 = 𝐼𝑛

}
denote the set of orthogo-

nal symmetric 𝑛 × 𝑛 matrices over 𝑘.
Does this set have an interesting structure with regards to the regular matrix opera-
tions?
The following simple lemma will be used throughout the following discussion.

Lemma 1
Let 𝑘 be a field and 𝜆 ∈ 𝑘. Then 𝜆2 = 1 implies 𝜆 = ±1.

Proof. Factoring the polynomial to get 0 = 𝜆2 − 1 = (𝜆 − 1)(𝜆 + 1). As 𝑘 is field it has
no zero divisors and so either 𝜆 − 1 = 0 or 𝜆 + 1 = 0.

Notation: 𝐼𝑛 denotes the identity matrix of size 𝑛 and 𝐶𝑚 the cyclic group of order 𝑚
i.e. 𝐶𝑚 = ℤ/𝑚ℤ

Addition
The zero matrix is not an element ofOS𝑛(𝑘) since all elements ofOS𝑛(𝑘) are invertible
(all elements have order 2).
Let 𝐴 be in OS𝑛(𝑘). Then −𝐴 = (−𝐴)𝑇 by definition and

(−𝐴)(−𝐴)
𝑇
= (−𝐴)(−𝐴) = 𝐼

implies that −𝐴 ∈ OS𝑛(𝑘). So OS𝑛(𝑘) is not closed under regular matrix addition.

Multiplication
The identity matrix is fortunately included in OS𝑛(𝑘).

Case 𝑛 ≥ 3

Consider the matrix product:

⎡
⎢
⎢
⎣

1 0 0

0 0 1

0 1 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 1 0

1 0 0

0 0 1

⎤
⎥
⎥
⎦

=

⎡
⎢
⎢
⎣

0 1 0

0 0 1

1 0 0

⎤
⎥
⎥
⎦

∉ OS𝑛(𝑘)

The resulting matrix is not symmetric and by that OS𝑛(𝑘) is not closed under multi-
plication for 𝑛 ≥ 3.

Case 𝑛 = 1

All elements trivially fulfill 𝐴 = 𝐴𝑇 . This reduces the set to OS1(𝑘) =
{
𝐴2 = 1

}
or

in other words all square roots of unity. Using the above lemma you can conclude

𝐴 = ±1. This implies OS1(𝑘) =

{

𝐶1 if char(𝑘) = 1

𝐶2 if char(𝑘) ≠ 2
.
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Case 𝑛 = 2

Case char(𝑘) ≠ 2

Since char(𝑘) ≠ 2 the elements 1 and −1 are not equal and the matrix product

[

1 0

0 −1] [

0 1

1 0]
=
[

0 1

−1 0]
∉ OS2(𝑘)

is not contained in OS2(𝑘).
Further can OS2(𝑘) be embedded into larger OS𝑛(𝑘) via:

[

OS2(𝑘) 0

0 𝐼𝑛−2]
⊆ OS𝑛(𝑘)

This mapping preserves multiplication and restates the case for 𝑛 ≥ 3.

Case char(𝑘) = 2

All elements have order 2 so you get

[

1 0

0 1]
=
[

𝑎 𝑏

𝑏 𝑐]

2

=
[

𝑎2 + 𝑏2 𝑎𝑏 + 𝑏𝑐

𝑏𝑎 + 𝑐𝑏 𝑏2 + 𝑐2 ]
=
[

𝑎2 + 𝑏2 𝑏(𝑎 + 𝑐)

𝑏(𝑎 + 𝑐) 𝑏2 + 𝑐2 ]

If 𝑏 = 0 then 𝑎2 = 1 = 𝑐2 which implies 𝑎 = 1 = 𝑐.
Otherwise 𝑎 = 𝑐 as 0 = 𝑏(𝑎 + 𝑐) implies 𝑎 + 𝑐 = 0 since 𝑘 has no zero divisors.
Focusing on the first entry you get

1 = 𝑎
2
+ 𝑏

2
= (𝑎 + 𝑏)

2

which using the lemma implies 𝑎 + 𝑏 = 1 or in other words 𝑏 = 𝑎 + 1. Putting these
all together you get:

OS2(𝑘) =

{

[

𝜆 𝜆 + 1

𝜆 + 1 𝜆 ]
| for 𝜆 ∈ 𝑘

}

Furthermore the map

𝑘 → OS2(𝑘) ∶ 𝜆 ↦
[

𝜆 𝜆 + 1

𝜆 + 1 𝜆 ]

is a bijection between 𝑘 and OS2(𝑘). Whats left to show is that OS2(𝑘) is closed under
multiplication:

[

𝜆 𝜆 + 1

𝜆 + 1 𝜆 ] [

𝜌 + 1 𝜌

𝜌 𝜌 + 1]
=
[

𝜆(𝜌 + 1) + (𝜆 + 1)𝜌 𝜆𝜌 + (𝜆 + 1)(𝜌 + 1)

𝜆𝜌 + (𝜆 + 1)(𝜌 + 1) (𝜆 + 1)𝜌 + 𝜆(𝜌 + 1)]
=
[

𝜆 + 𝜌 𝜆 + 𝜌 + 1

𝜆 + 𝜌 + 1 𝜆 + 𝜌 ]

So OS2(𝑘) has a group structure with regards to the regular matrix multiplication.
This calculation also shows that the group is abelian as addition is commutative in 𝑘.
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Lemma 2
OS2(𝑘) is an abelian group.

Proof. All elements have order 2 by definition. Let 𝐴 and 𝐵 be in OS2(𝑘)

𝐴𝐵 = 𝐴𝐵 𝐼2 = 𝐴𝐵 (𝐵𝐴)
2
= 𝐴𝐵 𝐵𝐴 𝐵𝐴 = 𝐵𝐴

This means that all elements commute with each other.

Theorem 1
Let 𝑘 be a finite field with |𝑘| = 2𝑚, then OS2(𝑘) = 𝐶𝑚

2

Proof. Using the classification of finite abelian groups you get that OS2(𝑘) = 𝐶𝑀
2 for

some 𝑀 ∈ ℕ. Using the above bijection you get

2
𝑚
= |𝑘| = |OS2(𝑘)| = |𝐶

𝑀
2 | = 2

𝑀

and you can conclude 𝑚 = 𝑀 .

Numerical exploration
The code for this implementation can be found in its git repository:

git://git.lemen.xyz/orthosymmetrical.git

The above shows that OS𝑛(𝑘) carries no relevant structure for 𝑛 ≥ 3. Noting that the
field 𝑘 = 𝔽2 = ℤ/2ℤ has exactly 2 elements, which can be easily mapped to binary
bits, the following mapping into the integers is immediate:

𝑀𝑛×𝑛 → ℤ ∶

⎡
⎢
⎢
⎢
⎣

𝑏1 𝑏2 ... 𝑏𝑛

𝑏𝑛+1 ... ... ...

... ... ... ...

... ... ... 𝑏𝑛×𝑛

⎤
⎥
⎥
⎥
⎦

↦

𝑛2

∑

𝑖=1

𝑏𝑖2
𝑖−1

This mapping sends a matrix to the integer represented by a binary string (in least
significant bit order) and gives also rise to an ordering on 𝑀𝑛×𝑛 by retracting the or-
dering on ℤ back onto the matrices. In other words: You interpret the matrix as a
single binary represented integer. The ordering is used in the following discussion
when talking about the smallest and largest matrices. With this mapping you can
easily enumerate all matrices in 𝑀𝑛×𝑛 by using its partial inverse map.
Examples 𝑛 = 3

1 = 1000000002 ↦
⎡
⎢
⎢
⎣

1 0 0

0 0 0

0 0 0

⎤
⎥
⎥
⎦

311 = 1110110012 ↦
⎡
⎢
⎢
⎣

1 1 1

0 1 1

0 0 1

⎤
⎥
⎥
⎦

The enumeration has been implemented to calculate the sizes of the sets OS𝑛(𝔽2) for
some small 𝑛:
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𝑛 1 2 3 4 5 6 7 8 9

|OS𝑛(𝔽2)| 1 2 4 20 76 752 5104 104960 ?

This sequence is currently not found in the OEIS which indicates that the above dis-
cussion probably fruitless. Also the sizes of the matrix rings 𝑀𝑛×𝑛(𝔽2) are increasing
exponentially, so enumerating them becomes inefficient.

Implementation details
Some speedups can be achieved when considering the inherent structure of OS𝑛(𝑘).
As we are only considering symmetric matrices it is enough to set half the matrix and
reflect it along its diagonal. This reduces the search space from 𝑛2 to 𝑛(𝑛 + 1)/2 and
cuts it approximately in half. It is also useful to note that this reduction preserves the
ordering. In the case for 𝑛 = 4:

𝑏1 ⋯ 𝑏10 ↦

⎡
⎢
⎢
⎢
⎣

𝑏1 𝑏2 𝑏3 𝑏4

𝑏2 𝑏5 𝑏6 𝑏7

𝑏3 𝑏6 𝑏8 𝑏9

𝑏4 𝑏7 𝑏9 𝑏10

⎤
⎥
⎥
⎥
⎦

The smallest index is a matrix with 1 on its anti-diagonal:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Proof. You can calculate that the proposed starting index is indeed in OS𝑛(𝑘).
As each element in OS𝑛(𝑘) is invertible, the minimal element can not have a zero row
or column. This implies that each row must have at least one 1. Indeed it is the case
that there is no smaller invertible matrix with that property:
None of the entries right of the anti-diagonal can be 1 as they would be larger than
the proposed starting index. This leaves a matrix in triangle form. As the matrix is
invertible it needs to have full rank. If any of the entries on the anti-diagonal would
be 0 the rank would not be full. Then if any of the entries left of the anti-diagonal
would be 1 it would again be bigger than the proposed matrix.

The end indices depend on the dimension:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 0

1 1 1 1 0 1

1 1 1 0 1 1

1 1 0 1 1 1

1 0 1 1 1 1

0 1 1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 1 1 1 0 1

0 1 1 1 0 1 1

0 1 1 0 1 1 1

0 1 0 1 1 1 1

0 0 1 1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

even dimension odd dimension
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Proof. You can check that both type of matrices are contained in their respective
OS𝑛(𝑘).
Consider the even case first. Every row and column needs to have an odd number 0s
or the square will not be equal to 𝐼𝑛. It follows that every row needs to have at least
one 0. This implies that the last row is equal to the proposed row as shifting the 0

to any other place would decrease the associated index. The same reasoning can be
applied to the next row with the caveat that the 0 can’t be further left as this would
duplicate a row beneath it.
The argument for the odd case is similar with the difference that every row needs to
have an even number of 0s. No row can have only 1s as this would make the square
not equal 𝐼𝑛 again.
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